Assessing groundwater level modelling using a 1-D convolutional neural network (CNN): linking model performances to geospatial and time series features (2024)

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., and Davis, A.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, Zenodo [code], https://doi.org/10.5281/zenodo.4724125, 2015. a

Ahmadi, A., Olyaei, M., Heydari, Z., Emami, M., Zeynolabedin, A., Ghomlaghi, A., Daccache, A., Fogg, G. E., and Sadegh, M.: Groundwater Level Modeling with Machine Learning: A Systematic Review and Meta-Analysis, Water, 14, 949, https://doi.org/10.3390/w14060949, 2022. a, b

Alibrahim, H., and Ludwig, S. A.: Hyperparameter Optimization: Comparing Genetic Algorithm against Grid Search and Bayesian Optimization, in: 2021IEEE Congress on Evolutionary Computation(CEC), Kraków, Poland, 28June–1July2021, 1551–1559, https://doi.org/10.1109/CEC45853.2021.9504761, 2021. a

Armstrong, R.A.: Should Pearson's correlation coefficient be avoided?, Ophthal. Physl. Opt., 39, 316–327, https://doi.org/10.1111/opo.12636, 2019. a

Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l'hydrologie du bassin versant, Hydrol. Sci. B., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979. a

BGR: Geomorphographische Einheiten von Deutschland, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, https://geoportal.bgr.de/mapapps/resources/apps/geoportal/index .html?lang=de#/datasets/portal/60ab5e4e-9493-44b0-9cae-d9ce603de742 (last access: 15 June 2024), 2006. a, b

BGR: Geologische Übersichtskarte der Bundesrepublik Deutschland 1:250.000 (GÜK250), Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, https://produktcenter.bgr.de/terraCatalog/DetailResult.do?fileIde ntifier=0f2e1b5b-fc02-4491-a12b-2178473f5c84 (last access: 15 June 2024), 2019a. a

BGR: Hydrogeologische Übersichtskarte 1:250.000 von Deutschland (HÜK250), Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, https://geoportal.bgr.de/mapapps/resources/apps/geoportal/index .html?lang=de#/datasets/portal/61ac4628-6b62-48c6-89b8-46270819f0d6 (last access: 15 June 2024), 2019b. a

BKG: Digitales Geländemodell Gitterweite 1000 m (DGM1000), Bundesamt für Kartographie und Geodäsie, Frankfurt am Main, https://gdz.bkg.bund.de/index.php/default/digitale-geodaten/digitale-gelandemodelle/digitales-gelandemodell-gitterweite-1000-m-dgm1000.html (last access: 15 June 2024), 2021. a, b, c

Chakraborty, D., Başağaoğlu, H., Gutierrez, L., and Mirchi, A.: Explainable AI reveals new hydroclimatic insights for ecosystem-centric groundwater management, Environ. Res. Lett., 16, 114024, https://doi.org/10.1088/1748-9326/ac2fde, 2021. a, b

Christ, M., Braun, N., Neuffer, J., and Kempa-Liehr, A.W.: Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh– A Python package), Neurocomputing, 307, 72–77, https://doi.org/10.1016/j.neucom.2018.03.067, 2018. a

Copernicus: CORINE Land Cover2018 (vector/raster 100 m), Europe, 6-yearly, European Environment Agency, https://doi.org/10.2909/960998c1-1870-4e82-8051-6485205ebbac, 2018.  a, b

Copernicus: Index Corine Land Cover (CLC), European Environment Agency, https://land.copernicus.eu/content/corine-land-cover-nomenclature-guidelines/html/ (last access: 15 June 2024), 2022. a

Daliakopoulos, I.N., Coulibaly, P., and Tsanis, I.K.: Groundwater level forecasting using artificial neural networks, J.Hydrol., 309, 229–240, https://doi.org/10.1016/j.jhydrol.2004.12.001, 2005. a

deGraaf, I., Gleeson, T., Rensvan Beek, L., Sutanudjaja, E., and Bierkens, M.: Environmental flow limits to global groundwater pumping, Nature, 574, 90–94, https://doi.org/10.1038/s41586-019-1594-4, 2019. a

DWD: Climate Data Center– Grids Germany- HYRAS dataset, https://opendata.dwd.de/climate_environment/CDC/grids_germany/daily/hyras_de/, last access: 15 June 2024. a

Earman, S. and Dettinger, M.: Potential impacts of climate change on groundwater resources– A global review, J.Water Clim. Change, 2, 213–229, https://doi.org/10.2166/wcc.2011.034, 2011. a

Fabio, D.N., Abba, S.I., Pham, B.Q., TowfiqulIslam, A. R.M., Talukdar, S., and Francesco, G.: Groundwater level forecasting in Northern Bangladesh using nonlinear autoregressive exogenous (NARX) and extreme learning machine (ELM) neural networks, Arab. J. Geosci., 15, 647, https://doi.org/10.1007/s12517-022-09906-6, 2022. a

Famiglietti, J.S.: The global groundwater crisis, Nat. Clim. Change, 4, 945–948, https://doi.org/10.1038/nclimate2425, 2014. a

Nogueira, F.: Bayesian Optimization: Open source constrained global optimization tool for Python, GitHub [code], https://github.com/bayesian-optimization/BayesianOptimization (last access: 15June2024), 2014. a, b, c

Frick, C., Steiner, H., Mazurkiewicz, A., Riediger, U., Rauthe, M., Reich, T., and Gratzki, A.: Central European high-resolution gridded daily data sets (HYRAS): Mean temperature and relative humidity, Meteorol.Z., 23, 15–32, https://doi.org/10.1127/0941-2948/2014/0560, 2014. a, b

Fritsch, F.N. and Butland, J.: A Method for Constructing Local Monotone Piecewise Cubic Interpolants, SIAM J. Sci. Stat. Comp., 5, 300–304, https://doi.org/10.1137/0905021, 1984. a

Gholizadeh, H., Zhang, Y., Frame, J., Gu, X., and Green, C.T.: Long short-term memory models to quantify long-term evolution of streamflow discharge and groundwater depth in Alabama, Sci. Total Environ., 901, 165884, https://doi.org/10.1016/j.scitotenv.2023.165884, 2023. a

Goderniaux, P., Brouyère, S., Wildemeersch, S., Therrien, R., and Dassargues, A.: Uncertainty of climate change impact on groundwater reserves– Application to a chalk aquifer, J.Hydrol., 528, 108–121, https://doi.org/10.1016/j.jhydrol.2015.06.018, 2015. a

Gomez, M.: mgomezo12/Performance_CNN_v3: Assessing Groundwater Level Modelling using a 1D-CNN: Linking Model Performances to Geospatial and Time Series Features (Version3), Zenodo [code and data set], https://doi.org/10.5281/zenodo.12531372, 2024. a, b

Gong, Y., Zhang, Y., Lan, S., and Wang, H.: A Comparative Study of Artificial Neural Networks, Support Vector Machines and Adaptive Neuro Fuzzy Inference System for Forecasting Groundwater Levels near Lake Okeechobee, Florida, Water Resour. Manag., 30, 375–391, https://doi.org/10.1007/s11269-015-1167-8, 2016. a, b

Guzman, S.M., Paz, J.O., and Tagert, M. L.M.: The Use of NARX Neural Networks to Forecast Daily Groundwater Levels, Water Resour. Manag., 31, 1591–1603, https://doi.org/10.1007/s11269-017-1598-5, 2017. a

Heudorfer, B., Liesch, T., and Broda, S.: On the challenges of global entity-aware deep learning models for groundwater level prediction, Hydrol. Earth Syst. Sci., 28, 525–543, https://doi.org/10.5194/hess-28-525-2024, 2024. a

Hunt, E.D., Hubbard, K.G., Wilhite, D.A., Arkebauer, T.J., and Dutcher, A.L.: The development and evaluation of a soil moisture index, Int. J. Climatol., 29, 747–759, https://doi.org/10.1002/joc.1749, 2009. a

Hunter, J.D.: Matplotlib: A 2DGraphics Environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a

Jordahl, K., Vanden Bossche, J., Fleischmann, M., Wasserman, J., McBride, J., and Gerard, J.: geopandas/geopandas: v0.8.1, Zenodo [code], https://doi.org/10.5281/zenodo.3946761, 2020. a

Kløve, B., Ala-Aho, P., Bertrand, G., Gurdak, J.J., Kupfersberger, H., Kværner, J., Muotka, T., Mykrä, H., Preda, E., Rossi, P., Uvo, C.B., Velasco, E., and Pulido-Velazquez, M.: Climate change impacts on groundwater and dependent ecosystems, J.Hydrol., 518, 250–266, https://doi.org/10.1016/j.jhydrol.2013.06.037, 2013. a, b, c, d, e

Knoll, L., Breuer, L., and Bach, M.: Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning, Sci. Total Environ., 668, 1317–1327, https://doi.org/10.1016/j.scitotenv.2019.03.045, 2019. a

Kratzert, F., Gauch, M., Klotz, D., and Nearing, G.: HESS Opinions: Never train a Long Short-Term Memory (LSTM) network on a single basin, Hydrol. Earth Syst. Sci., 28, 4187–4201, https://doi.org/10.5194/hess-28-4187-2024, 2024. a

LBEG: Hydrogeologische Räume und Teilräume in Niedersachsen, Landesamt für Bergbau, Energie und Geologie, Hannover, https://www.umwelt.niedersachsen.de/startseite/themen/wasser/grundwasser/grundwasserbericht_niedersachsen/nutzung_schutz_und_uberwachung/hydrogeologischer_uberblick/ (last access: 15 June 2024), 2016. a, b, c

LeCun, Y., Hinton, G., and Bengio, Y.: Deep learning, Nature, 521, 436–444, https://doi.org/10.1038/nature14539, 2015. a

Lee, S., Lee, K.K., and Yoon, H.: Using artificial neural network models for groundwater level forecasting and assessment of the relative impacts of influencing factors, Hydrogeol.J., 27, 567–579, https://doi.org/10.1007/s10040-018-1866-3, 2019. a, b

Lerner, D.N. and Harris, B.: The relationship between land use and groundwater resources and quality, Land Use Policy, 26, 265–273, https://doi.org/10.1016/j.landusepol.2009.09.005, 2009. a

Linke, C.: Leitlinien zur Interpretation regionaler Klimamodelldaten des Bund-Länder-Fachgespräches “Interpretation regionaler Klimamodelldaten”, Landesamt für Umwelt Brandenburg, Potsdam, https://lfu.brandenburg.de/cms/media.php/lbm1.a.3310.de/blfg_leitlinie_klima.pdf (last access: 15 June 2024), 2017. a

Liu, Q., Gui, D., Zhang, L., Niu, J., Dai, H., Wei, G., and Hu, B.X.: Simulation of regional groundwater levels in arid regions using interpretable machine learning models, Sci. Total Environ., 831, 154902, https://doi.org/10.1016/j.scitotenv.2022.154902, 2022. a

LSN: Öffentliche Wasserversorgung und Abwasserbeseitigung, Tech. rep., Landesamt für Statistik Niedersachsen, Hannover, https://www.statistik. niedersachsen.de/startseite/themen/umwelt_und_energie/umwel t-und-energie-in-niedersachsen-statistische-berichte-q-i-2-178924.html (last access: 15 June 2024), 2016. a, b

Malik, A. and Bhagwat, A.: Modelling groundwater level fluctuations in urban areas using artificial neural network, Groundwater for Sustainable Development, 12, 100484, https://doi.org/10.1016/j.gsd.2020.100484, 2021. a

Mohanty, S., Jha, M.K., and Raul, S.K.: Using Artificial Neural Network Approach for Simultaneous Forecasting of Weekly Groundwater Levels at Multiple Sites, Water Resour. Manag., 29, 5521–5532, https://doi.org/10.1007/s11269-015-1132-6, 2015. a

Moriasi, D.N., Gitau, M.W., Pai, N., and Daggupati, P.: Hydrologic and water quality models: Performance measures and evaluation criteria, T.ASABE, 58, 1763–1785, https://doi.org/10.13031/trans.58.10715, 2015. a

NMUEK: Lower Saxony contribution to the management plans 2015 to 2021 for the Elbe, Weser, Ems, and Rhine river basins, Niedersächsisches Ministerium für Umwelt, Energie und Klimaschutz, Hannover, https://www.nlwkn.niedersachsen.de/download/109179/Management_plans_2015_to_2021.pdf (last access: 15June2024), 2015. a, b, c

OSM: Download OpenStreetMap data for this region: Niedersachsen, Geofabrik GmbH, Karlsruhe, https://download.geofabrik.de/europe/germany/niedersachsen.html (last access: 15 June 2024), 2022. a, b, c

Pan, Y., Gong, H., Zhou, D., Li, X., and Nakagoshi, N.: Impact of land use change on groundwater recharge in Guishui River Basin, China, Chinese Geogr. Sci., 21, 734–743, https://doi.org/10.1007/s11769-011-0508-7, 2011. a

Pistocchi, A.: Leaf Area Index (MAPPE model), Tech. rep., European Commission, Joint Research Centre (JRC), https://data.jrc.ec.europa.eu/dataset/jrc-mappe-europe-setup-d-18-lai (last access: 15 June 2024), 2015. a

Post, V.E. and von Asmuth, J.R.: Revue : Mesure du niveau piézométrique-nouvelles technologies, pièges classiques, Hydrogeol.J., 21, 737–750, https://doi.org/10.1007/s10040-013-0969-0, 2013. a

Rajaveni, S.P., Brindha, K., and Elango, L.: Geological and geomorphological controls on groundwater occurrence in a hard rock region, Applied Water Science, 7, 1377–1389, https://doi.org/10.1007/s13201-015-0327-6, 2017. a

Rauthe, M., Steiner, H., Riediger, U., Mazurkiewicz, A., and Gratzki, A.: A Central European precipitation climatology– PartI: Generation and validation of a high-resolution gridded daily data set (HYRAS), Meteorol.Z., 22, 235–256, https://doi.org/10.1127/0941-2948/2013/0436, 2013. a, b, c

Razafimaharo, C., Krähenmann, S., Höpp, S., Rauthe, M., and Deutschländer, T.: New high-resolution gridded dataset of daily mean, minimum, and maximum temperature and relative humidity for Central Europe (HYRAS), Theor. Appl. Climatol., Springer, Berlin, https://doi.org/10.1007/s00704-020-03388-w, 2020. a, b

Reback, J., McKinney, W., Jbrockmendel, Van den Bossche, J., Augspurger, T., Cloud, P., Hawkins, S., Tratner, J., She, C., Ayd, W., Hoefler, P., Klein, A., Petersen, T., Roeschke, M., Schendel, J., Seabold, S., Sinhrks, and Waucomont, F.: pandas-dev/pandas: Pandas 1.4.2, Zenodo [code], https://doi.org//10.5281/zenodo.6702671, 2020. a

Reichenau, T.G., Korres, W., Montzka, C., Fiener, P., Wilken, F., Stadler, A., Waldhoff, G., and Schneider, K.: Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA), PLOS ONE, 11, 158451, https://doi.org/10.1371/journal.pone.0158451, 2016. a

Retike, I., Bikše, J., Kalvāns, A., Dēliņa, A., Avotniece, Z., Zaadnoordijk, W.J., Jemeljanova, M., Popovs, K., Babre, A., Zelenkevičs, A., and Baikovs, A.: Rescue of groundwater level time series: How to visually identify and treat errors, J.Hydrol., 605, 127294, https://doi.org/10.1016/j.jhydrol.2021.127294, 2022. a

Roshni, T., Jha, M.K., and Drisya, J.: Neural network modeling for groundwater-level forecasting in coastal aquifers, Neural Comput. Appl., 32, 12737–12754, https://doi.org/10.1007/s00521-020-04722-z, 2020. a

Rust, W., Holman, I., Corstanje, R., Bloomfield, J., and Cuthbert, M.: A conceptual model for climatic teleconnection signal control on groundwater variability in Europe, Earth-Sci. Rev., 177, 164–174, https://doi.org/10.1016/j.earscirev.2017.09.017, 2018. a

Snoek, J., Larochelle, H., and Adams, R. P.: Practical Bayesian optimization of machine learning algorithms, in: Advances in Neural Information Processing Systems, vol.4, edited by: Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger, K. Q., Curran Associates, Inc., ISBN 978-1627480031, 2012. a, b, c

Takafuji, E. H. de M., daRocha, M. M., and Manzione, R. L.: Groundwater Level Prediction/Forecasting and Assessment of Uncertainty Using SGS and ARIMA Models: A Case Study in the Bauru Aquifer System (Brazil), Nat. Resour. Res., 28, 487–503, https://doi.org/10.1007/s11053-018-9403-6, 2019. a

Tao, H., Hameed, M.M., Marhoon, H.A., Zounemat-Kermani, M., Heddam, S., Sungwon, K., Sulaiman, S.O., Tan, M.L., Sa'adi, Z., Mehr, A.D., Allawi, M.F., Abba, S.I., Zain, J.M., Falah, M.W., Jamei, M., Bokde, N.D., Bayatvarkeshi, M., Al-Mukhtar, M., Bhagat, S.K., Tiyasha, T., Khedher, K.M., Al-Ansari, N., Shahid, S., and Yaseen, Z.M.: Groundwater level prediction using machine learning models: A comprehensive review, Neurocomputing, 489, 271–308, https://doi.org/10.1016/j.neucom.2022.03.014, 2022. a

Tarasova, L., Gnann, S., Yang, S., Hartmann, A., and Wagener, T.: Catchment characterization: Current descriptors, knowledge gaps and future opportunities, Earth-Sci. Rev., 241, 104739, https://doi.org/10.1016/j.earscirev.2024.104739, 2024. a

Taylor, C. J. and Alley, W. M.: Ground-water-level monitoring and the importance of long-term water-level data, US Geological Survey Circular, US Geological Survey, Reston, VA, 68 pp., 2001. a, b

Treidel, H., Martin-Bordes, J. L., and Gurdak, J. J.: Climate change effects on groundwater resources: A global synthesis of findings and recommendations, International Association of Hydrogeologists, Taylor & Francis Group, Boca Raton, FL, ISBN 978-0-415-63152-2, 2011. a

Van DerWalt, S., Colbert, S.C., and Varoquaux, G.: The NumPy array: A structure for efficient numerical computation, Comput. Sci. Eng., 13, 22–30, https://doi.org/10.1109/MCSE.2011.37, 2011. a

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., vander Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A. R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., Vijaykumar, A., Bardelli, A.P., Rothberg, A., Hilboll, A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A., Woods, C.N., Fulton, C., Masson, C., Häggström, C., Fitzgerald, C., Nicholson, D.A., Hagen, D.R., Pasechnik, D.V., Olivetti, E., Martin, E., Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G.A., Ingold, G.-L., Allen, G.E., Lee, G.R., Audren, H., Probst, I., Dietrich, J.P., Silterra, J., Webber, J.T., Slavič, J., Nothman, J., Buchner, J., Kulick, J., Schönberger, J.L., deMirandaCardoso, J.V., Reimer, J., Harrington, J., Rodríguez, J. L.C., Nunez-Iglesias, J., Kuczynski, J., Tritz, K., Thoma, M., Newville, M., Kümmerer, M., Bolingbroke, M., Tartre, M., Pak, M., Smith, N.J., Nowaczyk, N., Shebanov, N., Pavlyk, O., Brodtkorb, P.A., Lee, P., McGibbon, R.T., Feldbauer, R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S., Pudlik, T., Oshima, T., Pingel, T.J., Robitaille, T.P., Spura, T., Jones, T.R., Cera, T., Leslie, T., Zito, T., Krauss, T., Upadhyay, U., Halchenko, Y.O., and Vázquez-Baeza, Y.: SciPy 1.0: fundamental algorithms for scientific computing in Python, Nature Meth., 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a, b

Wendt, D. E., Van Loon, A. F., Bloomfield, J. P., and Hannah, D. M.: Asymmetric impact of groundwater use on groundwater droughts, Hydrol. Earth Syst. Sci., 24, 4853–4868, https://doi.org/10.5194/hess-24-4853-2020, 2020. a

Wriedt, G., and NLWKN: Grundwasser Grundwasserbericht Niedersachsen Sonderausgabe zur Grundwasserstandssituation in den Trockenjahren 2018 und 2019, Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz, Hannover, https://www.nlwkn.niedersachsen.de/download/156169/NLWKN_2020_Grundwasserbericht_Niedersachsen_Sonderausgabe_zur_Grundwasserstandssituation_in_den_Trockenjahren_2018_und_2019_Band_41_.pdf (last access: 15 June 2024), 2020.  a

Wunsch, A., Liesch, T., and Broda, S.: Groundwater level forecasting with artificial neural networks: a comparison of long short-term memory (LSTM), convolutional neural networks (CNNs), and non-linear autoregressive networks with exogenous input (NARX), Hydrol. Earth Syst. Sci., 25, 1671–1687, https://doi.org/10.5194/hess-25-1671-2021, 2021. a, b, c, d, e

Wunsch, A., Liesch, T., and Broda, S.: Deep learning shows declining groundwater levels in Germany until 2100 due to climate change, Nat. Commun., 13, 1206, https://doi.org/10.1038/s41467-022-28770-2, 2022. a, b, c, d

Xu, Y.S., Shen, S.L., Cai, Z.Y., and Zhou, G.Y.: The state of land subsidence and prediction approaches due to groundwater withdrawal in China, Nat. Hazards, 45, 123–135, https://doi.org/10.1007/s11069-007-9168-4, 2008. a

Yang, Y. and Hyndman, R. J.: tsfeatures documentation, The Comprehensive R Archive Network (CRAN), https://cran.r-project.org/web/packages/tsfeatures/vignettes/tsfeatures.html (last access: 15 June 2024), 2020. a, b

Zanotti, C., Rotiroti, M., Sterlacchini, S., Cappellini, G., Fumagalli, L., Stefania, G.A., Nannucci, M.S., Leoni, B., and Bonomi, T.: Choosing between linear and nonlinear models and avoiding overfitting for short and long term groundwater level forecasting in a linear system, J.Hydrol., 578, 124015, https://doi.org/10.1016/j.jhydrol.2019.124015, 2019. a

Zhang, Q., Li, P., Ren, X., Ning, J., Li, J., Liu, C., Wang, Y., and Wang, G.: A new real-time groundwater level forecasting strategy: Coupling hybrid data-driven models with remote sensing data, J.Hydrol., 625, 129962, https://doi.org/10.1016/j.jhydrol.2023.129962, 2023. a

Assessing groundwater level modelling using a 1-D  convolutional neural network (CNN): linking model  performances to geospatial and time series features (2024)
Top Articles
Latest Posts
Recommended Articles
Article information

Author: Clemencia Bogisich Ret

Last Updated:

Views: 5850

Rating: 5 / 5 (80 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Clemencia Bogisich Ret

Birthday: 2001-07-17

Address: Suite 794 53887 Geri Spring, West Cristentown, KY 54855

Phone: +5934435460663

Job: Central Hospitality Director

Hobby: Yoga, Electronics, Rafting, Lockpicking, Inline skating, Puzzles, scrapbook

Introduction: My name is Clemencia Bogisich Ret, I am a super, outstanding, graceful, friendly, vast, comfortable, agreeable person who loves writing and wants to share my knowledge and understanding with you.